Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow

Building Science

Adventures In Building Science

Basements

Expansion of Conditioned Space

- · Conditioned space boundaries moving towards
- exterior surfaces of building

 Garage isolated from house by air barrier/pressure boundary
 Garage ventilated and conditioned independently of rest of conditioned spaces

Mechanisms of Flow

- Liquid Gravitational Hydrostatic Pressure
 Capillary Suction Pressure
 Osmosis Solute Concentration
- Vapor Diffusion Vapor Pressure
 Convective Air Pressure

Crawl Spaces

Crawl spaces must be completely connected to either the outside or the inside

Crawl spaces must be completely connected to either the outside or the inside

Vented crawl spaces work

Unvented conditioned crawl spaces work

Don't Do Stupid Things

Smart Thing

Conditioned Crawlspaces Not Unvented Crawlspaces

Need Supply Air 50 cfm/1000 ft2 of Crawlspace Area

Or Dehumidification

Alternative Detail

Smart Thing

Building Science Corporation

Slabs

Moisture Content vs. Relative Humidity

Plain

Hollow Back

Scratch Back

Hollow or Scratch Back

Stucco Failures

Stucco Evolved As A Barrier System

Exterior Insulation Finish Systems EIFS

Exterior Insulation Finish Systems

EIFS

Barrier System

Face-Sealed Not Water Managed

Can Barrier or Face Seal Work?

Reminder...

Don't Do Stupid Things

What Is Going On With Stucco?

Materials
Inward Vapor Drive
Energy

Water Vapor Permeance of Sheathing Materials

Rain Screen

EIFS No Longer Has Issues

Back To Stucco....

Side Trip To My Backyard....

"Lumpy Stucco"....
Should Have Been The Big Warning....

Side Trip To Vancouver....

Back To America....Pennslyvania....

And Then Pretty Much Anywhere It Rains...

Back To Lumpy Stucco....

Easy Solution....

Inward Vapor Drive

Exterior Conditions

Temperature: 80°F Relative humidity: 75% Vapor pressure: 2.49 kPa

Conditions within Cavity:

Temperature: 100°F Relative humidity: 100% Vapor pressure: 6.45 kPa

Interior Conditions

Temperature: 75°F Relative humidity: 60% Vapor pressure: 1.82 kPa

Vapor is driven both inward and outward by a high vapor pressure differential between the brick and the interior and the brick and the exterior.

Water Vapor Permeance of WRB's

Recommendations....

Provide a 1/4 inch air space behind all stucco in regions where it rains more than 20 inches per year

Provide a 1/4 inch air space behind all stucco over three stories

Don't install interior vapor barriers

Air space can be reduced to 1/16 inch where inward vapor drive is limited

Recommendations....

Barrier works in Florida over block
Barrier does not work in Florida over OSB
Don't install interior vapor barriers in Florida
Don't drain a drained system into a barrier
system

Pressures and IAQ

Definition of a Problem

People

Pollutant (hot, wet, UV, ozone)

Path

Pressure

Air Flow

- Air flow depends on size of hole
- Air flow depends on pressure difference Flow \cong Area x $\sqrt{\Delta P}$ x Coefficient
- Air flows from higher pressure to lower pressure

Figure 2.11 Three Dimensional Multi-Layer Multi-Cell Analogue

Figure 2.12 Three Dimensional Multi-Layer Multi-Cell Non-Contiguous Analogue

Figure 3.1 **Exterior Air Pressure Field** (from Hutcheon & Handegord, 1983)

Distribution of pressures (+) and suctions (-) on a house with a low-sloped roof with wind perpendicular to eave

Figure 3.2 **Exterior Air Pressure Field Extending Below Grade**

Pressure coefficients on walls and roof of rectangular buildings without parapets.

Figure 3.3 Interior Air Pressure Field

Figure 3.4 Interstitial Air Pressure Field

Figure 3.5 Air Conveyance System Air Pressure Field (from Sauer & Howell, 1990)

Figure 3.8 **Hotel HVAC System**

- · Air exhausted from bathrooms via central rooftop exhaust fans
- · Air supplied from corridors via undercut doors

Figure 3.10

Pressure Field Due to Fan-Coil Unit **Plan View**

- · Room is at positive air pressure relative to exterior-driven air from corridor and air supplied to room from fan-coil unit pulling air from exterior through the demising wall
- Fan-coil unit depressurizes dropped ceiling assembly due to return plenum design
- · Demising wall cavity pulled negative due to connection to dropped ceiling return plenum

Figure 3.11

Pressure Field Due to Central Exhaust **Plan View**

· Leakage of central exhaust duct pulls air out of service shaft depressurizing shaft and demising walls

Note: Colored shading depicts the building's thermal barrier and pressure boundary. The thermal barrier and pressure boundary enclose the conditioned space.

Note: Colored shading depicts the building's thermal barrier and pressure boundary. The thermal barrier and pressure boundary enclose the conditioned space.

Mechanical Systems

Mechanical Systems Cooling System To Make It Cold

Mechanical Systems
Cooling System To Make It Cold
Dehumidification System To Make It Dry

Mechanical Systems
Cooling System To Make It Cold
Dehumidification System To Make It Dry
Heating System To Make It Warm

Mechanical Systems
Cooling System To Make It Cold
Dehumidification System To Make It Dry
Heating System To Make It Warm
Energy Recovery System To Keep It Cold
and Dry and Warm and Comfortable

Mechanical Systems
Cooling System To Make It Cold
Dehumidification System To Make It Dry
Heating System To Make It Warm
Energy Recovery System To Keep It Cold
and Dry and Warm and Comfortable
Distribution System To Make It Uniform

Mechanical Systems Cooling System To Make It Cold Dehumidification System To Make It Dry Heating System To Make It Warm Energy Recovery System To Keep It Cold and Dry and Warm and Comfortable Distribution System To Make It Uniform Range Hoods Are A Special Kind of Hell

Don't Try to Combine Them.....

Build Tight - Ventilate Right

Build Tight - Ventilate Right How Tight? What's Right?

Air Barrier Metrics

Material 0.02 l/(s-m2) @ 75 Pa

Assembly 0.20 l/(s-m2) @ 75 Pa

Enclosure 2.00 l/(s-m2) @ 75 Pa

0.25 cfm/ft2 @ 50 Pa

Getting rid of big holes 3 ach@50 Getting rid of smaller holes 1.5 ach@50 Getting German 0.6 ach@50

Best

As Tight as Possible - with -

Balanced Ventilation

Energy Recovery

Distribution and Mixing

Source Control - Spot exhaust ventilation

Filtration

Material selection

Worst

Leaky - with — Nothing

Spot Ventilation in Bathroom/Kitchen

Exhaust Ventilation — with — No Distribution and No Mixing

Three Types of Controlled Ventilation Systems

Exhaust Ventilation
Supply Ventilation
Balanced Ventilation

Ventilation Rates Are Based on Odor Control

Ventilation Rates Are Based on Odor Control Health Science Basis for Ventilation Rates is **Extremely Limited**

Ventilation Rates Are Based on Odor Control Health Science Basis for Ventilation Rates is **Extremely Limited** Almost Nothing Cited Applies to Housing

Ventilation Rates Are Based on Odor Control Health Science Basis for Ventilation Rates is Extremely Limited

Almost Nothing Cited Applies to Housing
The Applicable Studies Focus on Dampness

House

2,000 ft²

3 bedrooms

8 ft. ceiling

Volume: 16,000 ft³

.35 ach 93 cfm

.30 ach 80 cfm

.25 ach 67 cfm

.20 ach 53 cfm

.15 ach 40 cfm

ASHRAE Standard 62.2 calls for 7.5 cfm per person plus 0.03 cfm per square foot of conditioned area

Occupancy is deemed to be the number of bedrooms plus one

- ASHRAE Standard 62.2 calls for 7.5 cfm per person plus 0.03 cfm per square foot of conditioned area
- Occupancy is deemed to be the number of bedrooms plus one
- Outcome is often bad part load humidity problems, dryness problems, energy problems

- IRC 2018 and IRC 2021 calls for 7.5 cfm per person plus 0.01 cfm per square foot of conditioned area
- Occupancy is deemed to be the number of bedrooms plus one
- A 30 % credit is provided if the ventilation system is "balanced" and provides distribution

3 Bedroom House – 2,500 ft2 30 cfm plus 75 cfm 105 cfm 3 Bedroom House – 2,500 ft2 30 cfm plus 25 cfm 55 cfm

3 Bedroom House – 2,500 ft2

30 cfm plus 25 cfm

55 cfm

With Balanced and Distributed 30 percent credit

38.5 cfm

The Cult of The Blower Door

Blower Door Can't Get You The True ACH On A Short Term Basis – Hour, Day, Week Don't Know Where The Holes Are
Don't Know The Type of Holes
Don't Know The Pressure Across The Holes

Dilution Is Not The Solution To Indoor **Pollution Source Control**

Dilution For People Source Control For The Building

Relative Humidity (RH) %

Recommended Range of Relative Humidity Above 25 percent during winter Below 70 percent during summer

Kitchen Exhaust Hoods

Clothes Dryers

Fireplaces

Approaches

Lapse Rate

U.S. Standard Atmosphere (1976)

Figure 11.1: Building with no internal separations with opening at the bottom (Adapted from G.O. Handegord, 1998)

Figure 11.2: Building with no internal separations with opening at the top (Adapted from G.O. Handegord, 1998)

Figure 11.3: Building with no internal separations with openings at top and bottom (Adapted from G.O. Handegord, 1998)

Figure 11.4: Basic two storey house with vented attic (Adapted from G.O. Handegord, 1998)

Figure 11.5: Two storey house with non-operating chimney and exhaust fan (Adapted from G.O. Handegord, 1998)

Figure 11.6: Two storey house with operating chimney (Adapted from G.O. Handegord, 1998)

Stack effect

Wind

Stack effect and wind

Figure 11.8: Stack effect pressures in high rise office building (Adapted from G.O. Handegord, 1998)

Figure 11.9: Multi-storey building with floor spaces isolated from vertical shafts (Adapted from G.O. Handegord, 1998)

Figure 11.12: Apartment building with tighter apartment entry doors (Adapted from G.O. Handegord, 1998)

Reduced Individual Unit Stack Effect

